Sulfonation Chemistry – more sustainable approaches
RSC Symposium, Basel, June 1-2, 2016

Dr. Jörg Schrickel
Marketing Manager Intermediates
CABB AG
More sustainable sulfonations

Content

- Conventional sulfonation reactions
 - Where they are used, which products are manufactured, their benefits and disadvantages

- Alternative sulfonation reactions
 - What can be improved, what is more sustainable, benefits and disadvantages

- More sustainable sulfonation reactions
 - What they look like, their sustainable benefits
More sustainable sulfonations
More sustainable sulfonations

Natural “sulfonations”

- Synthesis of thioles:
 - R-X + NaSH \(\rightarrow \) R-SH + NaX
 - Aryl-Grignard + sulfur
 - Diazonium salt + Na sulfide or Na xanthate

- Nature is not a model for sustainable sulfonations
More sustainable sulfonations

Conventional sulfonation

![Chemical reaction diagram]

Difficulties:
- Sulfuric acid: dilution effect due to formation of water: (large) excess of reagent necessary
- Sulfone formation as side reaction can be prevented by high excess of reagent
- Waste waters need to be neutralised (and oxidised due to dissolved organic residues)
- Sulfonic acids mainly easily soluble in water and reagent: difficult to isolate
- Sulfochlorination and subsequent hydrolysis: sulfonic acids better to isolate
More sustainable sulfonations

Conventional sulfonation

Conventional sulfonation:

- Benzene reacts with chlorosulfonic acid (-HCl) to form benzenesulfonic acid (SO₃H).
- Benzenesulfonic acid reacts with chlorosulfonic acid (-H₂SO₄) to form benzenesulfonyl chloride (SO₂Cl).

Bar chart showing the chlorosulfonation of benzene [kg]:

- Chlorosulfonic acid: -300 kg
- Benzenesulfonyl chloride: -200 kg
- Sulfuric acid/hydrochloric acid: 400 kg
More sustainable sulfonations

Challenges

- Paper chemistry: introduction of pure SO$_3$ would be the most efficient method
 - No waste
 - No dilution
 - Reactivity remains unchanged

- Problem:
 - Handling and availability: SO$_3$ is normally not available and highly reactive
 - Sophisticated solutions exist for dedicated sulfonation plants but no smart development for multi purpose environment

- Scale and type of process
 - Sulfonation in dedicated equipment: in general waste is not a «problem»
 - Problems are sulfonations in multi purpose equipment in «mid scale»

<table>
<thead>
<tr>
<th>Multi purpose</th>
<th>Dedicated / large volumes</th>
</tr>
</thead>
<tbody>
<tr>
<td>API’s</td>
<td>Ion exchange resins</td>
</tr>
<tr>
<td>AI’s</td>
<td>Detergents</td>
</tr>
<tr>
<td>Dyes</td>
<td></td>
</tr>
<tr>
<td>Polymers</td>
<td></td>
</tr>
</tbody>
</table>
More sustainable sulfonations

Alternative sulfonation reactions

<table>
<thead>
<tr>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smooth reaction conditions</td>
<td>Expensive</td>
</tr>
<tr>
<td>No aqueous, acidic waste</td>
<td>Not suitable for every sulfonation reaction</td>
</tr>
<tr>
<td>Liquid amines can be distilled off and re-used</td>
<td>Use of amines as «reaction aids»</td>
</tr>
<tr>
<td>Ideal for sensitive substrates</td>
<td>Hazardous reagents</td>
</tr>
<tr>
<td>Reactivity according to base strength of amines</td>
<td></td>
</tr>
</tbody>
</table>
More sustainable sulfonations

Sulfur trioxide on a polymeric carrier

Advantages	**Disadvantages**
Moderated reactivity | Needs SO$_3$ source
«Rechargeable» | Liquid/dissolved substrates needed

Polyvinylpyridine SO$_3$ complex
More sustainable sulfonations

Sulfonation with PVPS

- Feasibility study:
 - Reaction of n-dodecanol with PVPS
 - Batch reaction
 - Feasibility confirmed: 80% conversion; no product isolation
More sustainable sulfonations

CABB’s Verbund and recycling system
More sustainable sulfonations

Sulfonation with SO$_3$ in a microreactor

- Commercially interesting reaction: sulfonation of an aromatic compound
- High reactivity, exothermic reaction: → microreactor
- Multi-purpose approach: → microreactor
- Challenges:
 - solid starting material
 - solid product
 - liquid range of SO$_3$ is between 18°C and 48°C
 - dosage of SO$_3$
 - quantitative analysis of SO$_3$ volume
 - analytical detection method of SO$_3$
More sustainable sulfonations

Sulfonation with SO$_3$ in a microreactor

- Fraunhofer successfully reacted liquid SO$_3$ with molten PNT to yield PNTS in a microreactor

Heated SO$_3$ dosage

N$_2$ dosage

Microreactor

Nitrotoluene addition
More sustainable sulfonations

Sulfonation with SO₃ in a microreactor: results and learnings

- p-Nitrotoluene (PNT) was successfully reacted with SO₃ to yield p-Nitrotoluenesulfonic acid (PNTS)
 - PNT is heated to 75°C to obtain a liquid starting material
 - Dosage of liquid SO₃ with a syringe pump, evaporation of SO₃ before reaction with PNT
 - Reaction is fast; selectivity and yield depend on temperature and concentration parameters
 - A continuous reaction of PNT with SO₃ was carried out and analytical results determined at steady state
- Multi product approach possible for all starting materials with “low” melting points, or in solution
 - such kind of aromatic compounds are difficult to handle in a microreactor without a solvent
 - inert solvent for SO₃ sulfonation is difficult to find
 - microreactor is not the most suitable equipment for this reaction
Continuous sulfonation with oleum/\(\text{SO}_3\) in CSTR reactors

- Cascade of four reactors: two for reaction, two for work-up
- Preparation of a solution of PNTS via sulfonation of PNT with sulfuric acid to start the reaction
- Water resp. mother liquor is added and temperature lowered to precipitate PNTS
- Continuous process with recycling of mother liquor up to 4 times
 - Yield 98.5%
 - Disadvantage: use of oleum and dilution with water results in waste sulfuric acid

<table>
<thead>
<tr>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>High yield</td>
<td>Needs (\text{SO}_3) source</td>
</tr>
<tr>
<td>Continuous process for large volumes</td>
<td>No real multi purpose approach</td>
</tr>
<tr>
<td></td>
<td>Formation of waste</td>
</tr>
</tbody>
</table>

More sustainable sulfonations

\[
\begin{align*}
\text{O}_2\text{N} & \quad \xrightarrow{\text{SO}_3 / \text{H}_2\text{SO}_4} \quad \text{115°C} \quad \text{O}_2\text{N} \quad \text{SO}_3\text{H} \\
\end{align*}
\]
More sustainable sulfonations

Batch sulfonation with SO$_3$ in liquid SO$_2$

- Reaction in heterogeneous phase
- Suspension of PNT in liquid SO$_2$
- Exothermic reaction upon addition of SO$_3$ and SO$_2$ under reflux
- Distillation of SO$_2$ lets PNTS precipitate
- 98.6% yield with >99% purity

<table>
<thead>
<tr>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>No waste!</td>
<td>Needs SO$_3$ source</td>
</tr>
<tr>
<td>Multi-purpose approach</td>
<td>Needs SO$_2$ liquid</td>
</tr>
<tr>
<td>High yield and high purity</td>
<td></td>
</tr>
<tr>
<td>Recycling of SO$_2$</td>
<td></td>
</tr>
</tbody>
</table>
More sustainable sulfonations

Calculation of PNT sulfonetion processes

- Calculation of material and waste efficiency shows similar results of both processes
- Cost calculation of the two different processes shows surprisingly very similar process costs
- Better multi purpose approach: sulfonation in liquid SO$_2$ with SO$_3$ as reagent

<table>
<thead>
<tr>
<th></th>
<th>Continuous / oleum</th>
<th>Batch / SO$_2$ / SO$_3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Process Mass Intensity (PMI)</td>
<td>1.78</td>
<td>1.03</td>
</tr>
<tr>
<td>E-factor</td>
<td>0.78</td>
<td>0.03</td>
</tr>
</tbody>
</table>
More sustainable sulfonations

Sulfonation of polymers with SO$_3$ in SO$_2$

- Sulfonation of a polymer: pre- or postpolymerisation, homogeneous or heterogeneous
- Degree of sulfonation (dS) determines hydrophilicity
- Conventional process: solution of polymer in concentrated sulfuric acid
 - Precipitation into water, extended washing: very large amounts of waste water
- Alternative sulfonation process: SO$_3$ in liquid SO$_2$

<table>
<thead>
<tr>
<th></th>
<th>Conventional (sulfuric acid)</th>
<th>SO$_3$ in SO$_2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benefits</td>
<td>Polymer partially soluble in SE</td>
<td>Heterogeneous reaction</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Better control of dS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No chain cleavage</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No discoloration</td>
</tr>
<tr>
<td>Disadvantages</td>
<td>Cleavage of polymer, discoloration</td>
<td>Low solubility of polymer</td>
</tr>
<tr>
<td></td>
<td>Large volumes of waste water</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Long washing process</td>
<td></td>
</tr>
</tbody>
</table>
More sustainable sulfonations

Sulfonamide: conventional sulfonation with CI(III)SO₃H

Original process:

- Reaction of the aromatic compound with CI(III)SO₃H in dichloromethane at -5°C
- Subsequent reaction of intermediately formed sulfonic acid with CI(III)SO₃H to yield sulfonyl chloride
- Reaction of sulfonyl chloride with aqueous ammonia solution to yield sulfonamide

- HCl and H₂SO₄ are removed as aqueous waste
- Dichloromethane and toluene are completely recycled
More sustainable sulfonations

Sulfonamide: improved sulfonation with SO_3/SO_2

CABB's improved process

- Reaction of aromatic compound with SO_3 in liquid SO_2 at -20°C
- Reaction of sulfonic acid with thionyl chloride
- Reaction mixture is heated to 25°C which leads to evaporation of SO_2
- Reaction of sulfonyl chloride with aqueous ammonia solution in toluene
- SO_2 evaporates and is completely recycled
- HCl is converted into hydrochloric acid as commercial sales product
- One pot synthesis
More sustainable sulfonations

Sulfonamide: comparison of process efficiency

- No chlorinated nor other solvent necessary
- Sulfur dioxide comes out of the pipeline and is evaporated back into the Verbund system
- Different sulfonation technology: advantage of direct sulfonation with liquid sulfur trioxide
- Most efficient use of reagents (no loss of one molecule ClSO3H as sulfuric and hydrochloric acid)

<table>
<thead>
<tr>
<th></th>
<th>CH₃Cl / ClSO₃H</th>
<th>SO₂ / SO₃ / SOCl₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>Waste water</td>
<td>13 kg per kg product</td>
<td>5.9 kg per kg product</td>
</tr>
<tr>
<td>PMI</td>
<td>20.2</td>
<td>12.7</td>
</tr>
<tr>
<td>E-factor</td>
<td>19.2</td>
<td>11.7</td>
</tr>
<tr>
<td>Atom efficiency</td>
<td>44%</td>
<td>51%</td>
</tr>
</tbody>
</table>
More sustainable sulfonations

Conclusion

- Creation of waste in sulfonation reactions can be avoided using SO$_3$ as reagent
- Nearly no waste is formed using SO$_3$ in liquid SO$_2$ (E-factor almost zero)
- Sulfonations with SO$_3$ can be best controlled in continuous reactions (reactivity, exothermicity) or in liquid SO$_2$ (reactivity moderator) at low temperatures
- Sulfonations with SO$_3$ in SO$_2$ leads to better atom efficiency, lower PMI and lower E-factor values compared to other sulfonations (provided that the SO$_2$ is recycled)
Custom Manufacturing and Fine Chemicals

Dr. Jörg Schrickel
Marketing Manager Intermediates
joerg.schrickel@cabb-chemicals.com
www.cabb-chemicals.com